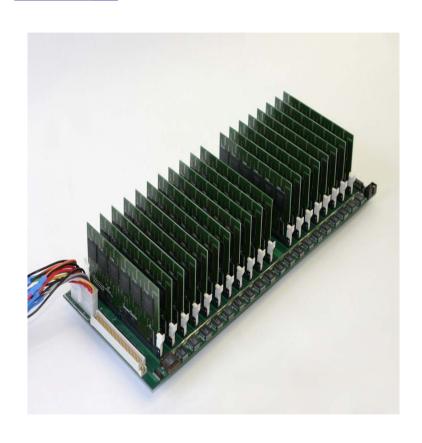


Breaking Ciphers with COPACOBANA A Cost-Optimized Parallel Code Breaker or How to Break DES for 8,980 €

CHES 2006, Yokohama, October 10-13, 2006

Sandeep Kumar, Jan Pelzl, Gerd Pfeiffer, Manfred Schimmler, Christof Paar



Acknowledgements

- Joint project with the University of Kiel (Gerd Pfeiffer, Manfred Schimmler)
- Special thanks to François-Xavier Standaert and Jean-Jacques Quisquater (Universitè Catholique de Louvain) for the core of the DES architecture

What's in a name?

Copacobana

Outline

- Security vs. Cost
- COPACOBANA Design
- Application 1: Brute Force Attack on DES
- Application 2: ECC Attack
- Conclusion and Outlook

hg THorst-Görtz Institut für IT Sicherheit

When is a Cipher Secure?

Symmetric ciphers

- (hopefully) only brute-force attack possible
- "secure" key lengths: 112...256 bit (attack compl. 2¹¹²...2²⁵⁶)
- but in practice wide variety of keys: AES, DES, RC4, A5, MD5, SHA-1, ... (attack compl. 2⁵⁶...2²⁵⁶)

Asymmetric ciphers (RSA, ECC, DL)

- algorithmic attacks (e.g., factorization) dictate larger keys
- key lengths in practice:
 - RSA, DL: 1024 ... 4096 bit
 - ECC: 160 ... 256 bit
- attack complexities: 280 (?) ... 2128

Security and Computation

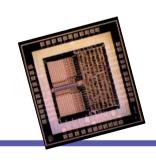
- Traditional: security of ciphers = complexity of attacks
- However: What really matters are the costs of an attack
- State-of-the-art
 - < 2⁵⁰ steps can be done with PC networks (more or less conveniently)
 - > 2⁸⁰ steps are very hard with today's technology (probably also for intelligence agencies)

Major question: Cost of attack for ciphers with 50...80 bit security (RSA1024, ECC160, SHA-1, DES, A5, ...)

Introduction: Massive Computing

Supercomputers (Cray, SG, ...)

 General (= complex & expensive) parallel computing architectures


- fast I/O, large memory, easy to program
- ▶ poor cost-performance ratio for (most) cryptanalysis

Distributed computing (conventional PCs)

- Dedicated clients in clusters, or
- Using PC's idle time: E.g., SETI@home (BOINC framework)
- ► Problem of motivation, confidentiality issues

Special-purpose hardware

- ASIC Application Specific Integrated Circuits (high NRE)
- FPGA Field Programmable Gate Arrays (low NRE)
- ► best cost-performance ratio

Introduction: Advantage of Hardware

Cost-performance ratio of DES¹): PC vs. FPGA

DES encryptions / decryptions per second

Pentium4@3GHz: $\approx 2 \times 10^6$

price per device (retail): € 80

Xilinx XC3S1000@100MHz $\approx 400 \times 10^{6}$

price per device (retail): € 40

► Cost-performance ratio differs by 2-3 orders of magnitude!

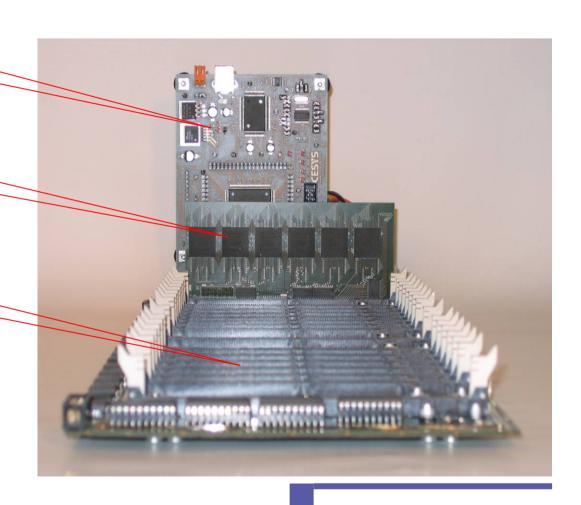
1) Based on actual optimized implementations

hg THorst-Görtz Institut für IT Sicherheit

COPACOBANA: Design Principles

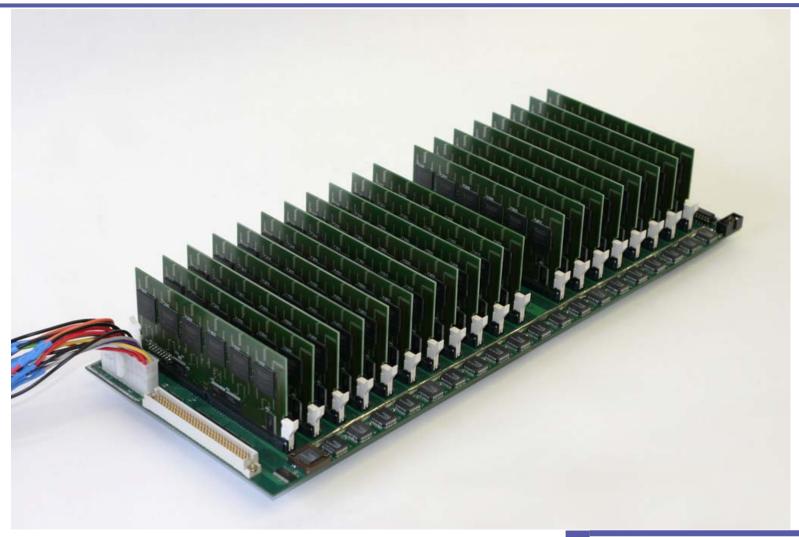
- Ability to perform ≥ 2⁵⁶ crypto operations
- Re-programmable: Applicable to many ciphers
- Strictly optimized cost-performance ratio:
 - off-the-shelf hardware (low-cost)
 - many logic resources (performance)
- < 9,000 € (including fabrication and material cost)
- Parallel architecture, based on 120 low-cost FPGAs
- Sacrifices
 - no global memory
 - no high-speed communication ("only" Mbit/s)

COPACOBANA: Realization


Controller board

FPGA module

Backplane


Scales easily:

- 20 FPGA modules/machine (120 FPGAs/machine)
- multiple machines via USB

COPACOBANA: Alpha Prototype

COPACOBANA: Applications

First flexible cryptanalytical machine outside government agencies

Attacks feasible

- 1 Exhaustive key search of DES
 - ciphers with 2⁵⁶...2⁶⁴ attack steps possible
- 2. Real-world systems such as ePass, Norton Diskreet, ...

Robust security estimations

- 3. Elliptic Curve Discrete Logarithm Problem (ECDLP)
 - Parallelized Pollard's Rho

Improves other attacks

- 4. Factorization
 - Parallelized Elliptic Curve Method (ECM) as subroutine for GNFS (see GMU's talk later)

Outline

- Security vs. Cost
- COPACOBANA Design
- Application 1: Brute Force Attack on DES
- Application 2: ECC Attack
- Conclusion and Outlook

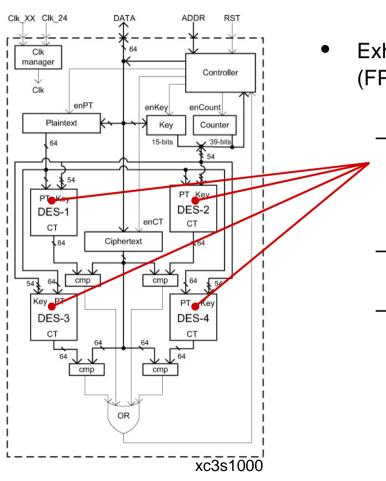
Cryptanalytical Applications: Attacks on DES

Data Encryption Standard (DES):

- Block cipher with 56-bit key
- Expired standard, but still used (legacy products, ePass, Norton Diskreet, ...)

Exhaustive key search (conventional technology):

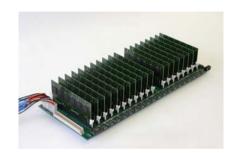
- Check 2⁵⁵ keys on average
- PC (e.g., Pentium4@3GHz) ≈ 2 mio. keys/sec
- Average key search with one PC ≈ 2³⁴ sec = 545 years!



► Can do much better with special-purpose hardware!

Attacks on DES

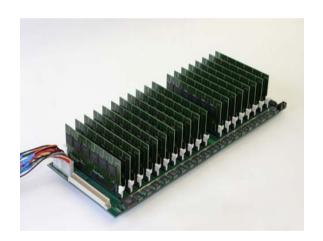
FPGA-based attacks on the Data Encryption Standard (DES):



- Exhaustive key search (FPGA based):
 - 4 completely pipelined DES engines per FPGA (courtesy of the crypto group of UCL)
 - one key per clock cycle per DES engine
 - One FPGA@100MHz: 400 mio. keys/ sec

Attacks on DES

COPACOBANA: average key search of
 8.7 days @ 100 MHz


- Somewhat higher clock rates possible
- FPGA vs. PC (average key search in 8.7 days)
 - -22,865 Pentium 4 (€ 3.6 million incl. overhead) or
 - COPACOBANA (total cost € 9000 incl. overhead)
- Alpha version of COPACABANA runs stable
- Life attack at http://www.copacobana.org/live

A Historical Perspective: The Power of Moore's Law

DeepCrack, 1998 \$250,000 COPACOBANA, 2006 \$10,000

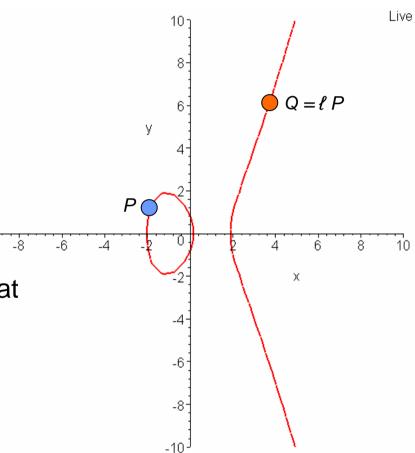
Moore' Law: 50% cost reduction / 1.5 years

 $2006-1998 = 8 \text{ years} \approx 5 \times 1.5 \text{ years}$

Prediction: $$250,000 / 2^5 \approx $8,000 \text{ (close to actual $10,000)}$

Outline

- Security vs. Cost
- COPACOBANA Design
- Application 1: Brute Force Attack on DES
- Application 2: ECC Attack
- Conclusion and Outlook


ECDL Problem

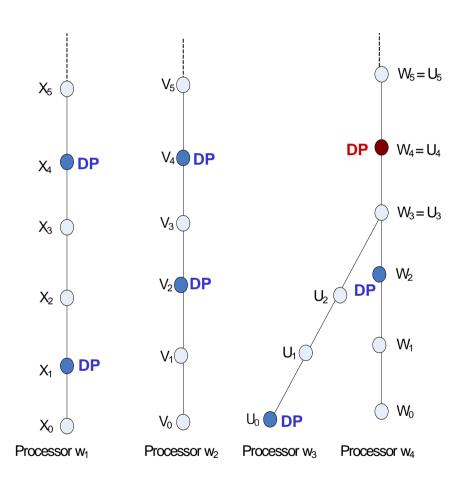
- Many real-world applications rely on hardness of ECDLP
 - ECDSA,
 - ECDH,
 - •
- Let P be a generator. Determine

 discrete logarithm ℓ of a point Q such that

$$Q = \ell P$$
.

Generic ECDLP Attacks

If parameters are chosen with care, only generic attacks are possible


- **1.** Naïve Search: Sequentially test P, 2P, 3P, 4P,...
 - Brute force attack is infeasible if $\#E \ge 2^{80}$
- 2. Shank's Baby-Step-Giant-Step Method
 - Complexity in time AND memory of about √ #E
- **3.** Pollard's Rho method (ρ)
 - Most efficient algorithm for general ECDLP
 - Complexity of √#E

Note: All attacks are exponential in the bit length of the group order

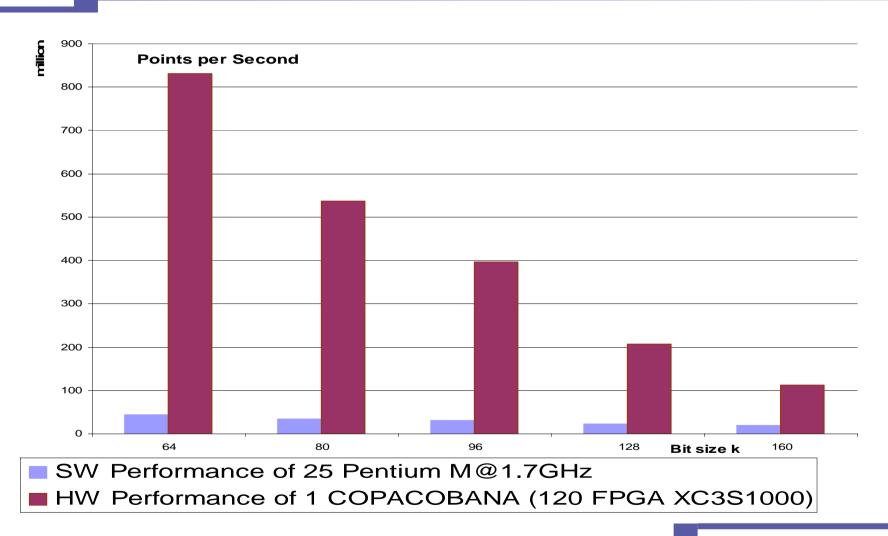
Multi Processor Pollard Rho (MPPR)

Best known attack against general ECC

Proposed by van Oorschot/Wiener in 1999

Processors have individual search paths for "Distinguished Points" (DP)

DP are stored at central server


Duplicate DP = ECDLP solution

Ideal parallelizatin: speed up linear in number of employed processors

Colliding DP trails of multiple processors w_i

ECDLP Attack Comparison: SW vs. HW for \$10.000

ECDLP Attacks for US\$ 1 million

Bit size k	SW Reference Pentium M@1.7	COPACOBANA	est. ASIC
80	40.6 h	2.58 h	-
96	8.04 d	14.8 h	-
112 (SEC-1)*	6.48 y	262 d	1.29 d
128	1.94 x10 ³ y	213 y	1.03 y
160	1.51 x 10 ⁸ y	2.58 x 10 ⁷ y	1.24 x 10 ⁵ y

^{*} SECG (STANDARDS FOR EFFICIENT CRYPTOGRAPHY)

hg THorst-Görtz Institut für IT Sicherheit

Conclusion - COPACOBANA

- Results
 - DES in 8.6 days
 - ECCp163 attack currently ≈ \$ 1 trillion (\$10¹²)
 - Moore's Law: ECC 160 will stay secure for ≈ 20 years
 - ECC112 (SEC-1 standard): insecure!
 - possibly real-time attack against ePass
- Many marginally weak ciphers are breakable
- "Strong" ciphers (AES, RSA-1024, ECC-163, …) not breakable, but robust estimates by extrapolation of COPACOBANA results
- Several future applications are currently investigated
- Pictures, papers, and much more at www.copacobana.org
- We are looking for partners for other applications